autogalaxy.plot.MLEPlotter#
- class MLEPlotter[source]#
Bases:
SamplesPlotter
Methods
close
corner_cornerpy
Plots a corner plot via the visualization library corner.py.
Plot the log likelihood of a model fit as a function of iteration number.
log_plot_exception
Plotting the results of a
dynesty
model-fit before they have converged on an accurate estimate of the posterior can lead thedynesty
plotting routines to raise aValueError
.Plots a subplot of every parameter against iteration number.
Attributes
log_posterior_list
model
- subplot_parameters(use_log_y=False, use_last_50_percent=False, **kwargs)[source]#
Plots a subplot of every parameter against iteration number.
The subplot extends over all free parameters in the model-fit, with the number of parameters per subplot given by the total number of free parameters in the model-fit.
This often produces a large dynamic range in the y-axis. Plotting the y-axis on a log-scale or only plotting the last 50% of samples can make the plot easier to inspect.
- log_likelihood_vs_iteration(use_log_y=False, use_last_50_percent=False, **kwargs)[source]#
Plot the log likelihood of a model fit as a function of iteration number.
For a maximum likelihood estimate, the log likelihood should increase with iteration number.
This often produces a large dynamic range in the y-axis. Plotting the y-axis on a log-scale or only plotting the last 50% of samples can make the plot easier to inspect.
- Parameters:
use_log_y (
bool
) – If True, the y-axis is plotted on a log-scale.