class autogalaxy.profiles.mass_profiles.SphPowerLawBroken(centre: Tuple[float, float] = (0.0, 0.0), einstein_radius: float = 1.0, inner_slope: float = 1.5, outer_slope: float = 2.5, break_radius: float = 0.01)
__init__(centre: Tuple[float, float] = (0.0, 0.0), einstein_radius: float = 1.0, inner_slope: float = 1.5, outer_slope: float = 2.5, break_radius: float = 0.01)

Ell, homoeoidal mass model with an inner_slope and outer_slope, continuous in density across break_radius. Position angle is defined to be zero on x-axis and +ve angle rotates the lens anticlockwise

The grid variable is a tuple of (theta_1, theta_2), where each theta_1, theta_2 is itself a 2D array of the x and y coordinates respectively.~


__init__(centre, float] = (0.0, 0.0), …) Ell, homoeoidal mass model with an inner_slope and outer_slope, continuous in density across break_radius.
caustics_from(grid[, pixel_scale])
convergence_1d_from(grid, Grid1D, …)
convergence_2d_from(grid, …) Returns the dimensionless density kappa=Sigma/Sigma_c (eq.
convergence_via_hessian_from(grid[, buffer])
convergence_via_jacobian_from(grid[, jacobian])
cos_and_sin_to_x_axis() Determine the sin and cosine of the angle between the profile’s ellipse and the positive x-axis, counter-clockwise.
critical_curves_from(grid[, pixel_scale])
deflections_2d_from(grid[, max_terms]) Returns the complex deflection angle from eq.
density_between_circular_annuli(…) Calculate the mass between two circular annuli and compute the density by dividing by the annuli surface area.
einstein_mass_angular_from(grid[, pixel_scale])
einstein_radius_from(grid[, pixel_scale])
eta_u(u, coordinates)
extract_attribute(cls, attr_name) Returns an attribute of a class and its children profiles in the the galaxy as a ValueIrregular or Grid2DIrregular object.
from_axis_ratio_and_phi(centre, …)
grid_angle_to_profile(grid_thetas) The angle between each angle theta on the grid and the profile, in radians.
grid_to_eccentric_radii(grid) Convert a grid of (y,x) coordinates to an eccentric radius, which is (1.0/axis_ratio) * elliptical radius and used to define light profile half-light radii using circular radii.
grid_to_elliptical_radii(grid) Convert a grid of (y,x) coordinates to an elliptical radius.
grid_to_grid_cartesian(grid, radius) Convert a grid of (y,x) coordinates with their specified circular radii to their original (y,x) Cartesian coordinates.
grid_to_grid_radii(grid) Convert a grid of (y, x) coordinates to a grid of their circular radii.
hessian_from(grid[, buffer, deflections_func])
hyp2f1_series(t, q, r, z[, max_terms]) Computes eq.
magnification_via_hessian_from(grid[, …])
mass_angular_within_circle(radius) Integrate the mass profiles’s convergence profile to compute the total mass within a circle of specified radius.
mass_integral(x) Routine to integrate an elliptical light profiles - set axis ratio to 1 to compute the luminosity within a circle
normalization_via_mass_angular_from(…[, …])
potential_1d_from(grid, Grid1D, …)
potential_2d_from(grid, …)
potential_func(u, y, x)
radial_caustic_from(grid[, pixel_scale])
radial_critical_curve_from(grid[, pixel_scale])
radial_eigen_value_from(grid[, jacobian])
rotate_grid_from_reference_frame(grid) Rotate a grid of (y,x) coordinates which have been transformed to the elliptical reference frame of a profile back to the original unrotated coordinate grid reference frame.
shear_via_hessian_from(grid[, buffer])
shear_via_jacobian_from(grid[, jacobian])
shear_yx_via_hessian_from(grid[, buffer])
shear_yx_via_jacobian_from(grid[, jacobian])
tangential_caustic_from(grid[, pixel_scale])
tangential_critical_curve_from(grid[, …])
tangential_eigen_value_from(grid[, jacobian])
transform_grid_from_reference_frame(grid) Transform a grid of (y,x) coordinates from the reference frame of the profile to the original observer reference frame, including a rotation to its original orientation and a translation from the profile’s centre.
transform_grid_to_reference_frame(grid) Transform a grid of (y,x) coordinates to the reference frame of the profile, including a translation to its centre and a rotation to it orientation.


average_convergence_of_1_radius The radius a critical curve forms for this mass profile, e.g.