autofit.Emcee#
- class Emcee[source]#
Bases:
AbstractMCMC
An Emcee non-linear search.
For a full description of Emcee, checkout its Github and readthedocs webpages:
https://emcee.readthedocs.io/en/stable/
If you use Emcee as part of a published work, please cite the package following the instructions under the Attribution section of the GitHub page.
- Parameters
name (
Optional
[str
]) – The name of the search, controlling the last folder results are output.path_prefix (
Optional
[str
]) – The path of folders prefixing the name folder where results are output.unique_tag (
Optional
[str
]) – The name of a unique tag for this model-fit, which will be given a unique entry in the sqlite database and also acts as the folder after the path prefix and before the search name.prior_passer (
Optional
[PriorPasser
]) – Controls how priors are passed from the results of this NonLinearSearch to a subsequent non-linear search.initializer (
Optional
[Initializer
]) – Generates the initialize samples of non-linear parameter space (see autofit.non_linear.initializer).auto_correlations_settings – Customizes and performs auto correlation calculations performed during and after the search.
number_of_cores (
Optional
[int
]) – The number of cores Emcee sampling is performed using a Python multiprocessing Pool instance. If 1, a pool instance is not created and the job runs in serial.session (
Optional
[Session
]) – An SQLalchemy session instance so the results of the model-fit are written to an SQLite database.
Methods
check_model
config_dict_with_test_mode_settings_from
copy_with_paths
exact_fit
- rtype
Tuple
[MeanField
,Status
]
fit
Fit a model, M with some function f that takes instances of the class represented by model M and gives a score for their fitness.
fit_sequential
Fit multiple analyses contained within the analysis sequentially.
fitness_function_from_model_and_analysis
make_pool
Make the pool instance used to parallelize a NonLinearSearch alongside a set of unique ids for every process in the pool.
make_sneaky_pool
Create a pool for multiprocessing that uses slight-of-hand to avoid copying the fitness function between processes multiple times.
optimise
Perform optimisation for expectation propagation.
perform_update
Perform an update of the NonLinearSearch results, which occurs every iterations_per_update of the non-linear search.
plot_results
remove_state_files
samples_from
Attributes
The Emcee hdf5 backend, which provides access to all samples, likelihoods, etc.
backend_filename
config_dict_run
A property that is only computed once per instance and then replaces itself with an ordinary attribute.
config_dict_search
A property that is only computed once per instance and then replaces itself with an ordinary attribute.
config_dict_settings
- rtype
config_type
logger
Log 'msg % args' with severity 'DEBUG'.
name
paths
- rtype
Optional
[AbstractPaths
]
samples_cls
timer
- property backend: HDFBackend#
The Emcee hdf5 backend, which provides access to all samples, likelihoods, etc. of the non-linear search.
The sampler is described in the “Results” section at https://dynesty.readthedocs.io/en/latest/quickstart.html
- Return type
HDFBackend