Source code for autoarray.structures.grids.irregular_2d

import logging
from typing import List, Optional, Tuple, Union

from autoarray.numpy_wrapper import np
from autoarray.abstract_ndarray import AbstractNDArray
from autoarray.geometry.geometry_2d_irregular import Geometry2DIrregular
from autoarray.mask.mask_2d import Mask2D
from autoarray.structures.arrays.irregular import ArrayIrregular

from autoarray import exc
from autoarray.structures.grids import grid_2d_util
from autoarray.geometry import geometry_util

logger = logging.getLogger(__name__)


[docs] class Grid2DIrregular(AbstractNDArray): def __init__(self, values: Union[np.ndarray, List]): """ An irregular grid of (y,x) coordinates. The `Grid2DIrregular` stores the (y,x) irregular grid of coordinates as 2D NumPy array of shape [total_coordinates, 2]. Calculations should use the NumPy array structure wherever possible for efficient calculations. The coordinates input to this function can have any of the following forms (they will be converted to the 1D NumPy array structure and can be converted back using the object's properties): :: [(y0,x0), (y1,x1)] [[y0,x0], [y1,x1]] If your grid lies on a 2D uniform grid of data the `Grid2D` data structure should be used. Parameters ---------- values The irregular grid of (y,x) coordinates. """ if len(values) == 0: super().__init__(values) return if type(values) is list: if isinstance(values[0], Grid2DIrregular): values = values else: values = np.asarray(values) super().__init__(values)
[docs] @classmethod def from_yx_1d(cls, y: np.ndarray, x: np.ndarray) -> "Grid2DIrregular": """ Create `Grid2DIrregular` from a list of y and x values. """ return Grid2DIrregular(values=np.stack((y, x), axis=-1))
[docs] @classmethod def from_pixels_and_mask( cls, pixels: Union[np.ndarray, List], mask: Mask2D ) -> "Grid2DIrregular": """ Create `Grid2DIrregular` from a list of coordinates in pixel units and a mask which allows these coordinates to be converted to scaled units. """ coorindates = [ mask.geometry.scaled_coordinates_2d_from( pixel_coordinates_2d=pixel_coordinates_2d ) for pixel_coordinates_2d in pixels ] return Grid2DIrregular(values=coorindates)
@property def values(self): return self._array @property def geometry(self): """ The (y,x) 2D shape of the irregular grid in scaled units, computed by taking the minimum and maximum values of (y,x) coordinates on the grid. """ shape_native_scaled = ( np.amax(self[:, 0]).astype("float") - np.amin(self[:, 0]).astype("float"), np.amax(self[:, 1]).astype("float") - np.amin(self[:, 1]).astype("float"), ) scaled_maxima = ( np.amax(self[:, 0]).astype("float"), np.amax(self[:, 1]).astype("float"), ) scaled_minima = ( np.amin(self[:, 0]).astype("float"), np.amin(self[:, 1]).astype("float"), ) return Geometry2DIrregular( shape_native_scaled=shape_native_scaled, scaled_maxima=scaled_maxima, scaled_minima=scaled_minima, ) @property def slim(self) -> "Grid2DIrregular": return self @property def native(self) -> "Grid2DIrregular": return self @property def in_list(self) -> List: """ Return the coordinates in a list. """ return [tuple(value) for value in self] @property def scaled_minima(self) -> Tuple: """ The (y,x) minimum values of the grid in scaled units, buffed such that their extent is further than the grid's extent. """ return ( np.amin(self[:, 0]).astype("float"), np.amin(self[:, 1]).astype("float"), ) @property def scaled_maxima(self) -> Tuple: """ The (y,x) maximum values of the grid in scaled units, buffed such that their extent is further than the grid's extent. """ return ( np.amax(self[:, 0]).astype("float"), np.amax(self[:, 1]).astype("float"), )
[docs] def extent_with_buffer_from(self, buffer: float = 1.0e-8) -> List[float]: """ The extent of the grid in scaled units returned as a list [x_min, x_max, y_min, y_max], where all values are buffed such that their extent is further than the grid's extent.. This follows the format of the extent input parameter in the matplotlib method imshow (and other methods) and is used for visualization in the plot module. """ return [ self.scaled_minima[1] - buffer, self.scaled_maxima[1] + buffer, self.scaled_minima[0] - buffer, self.scaled_maxima[0] + buffer, ]
[docs] def grid_2d_via_deflection_grid_from( self, deflection_grid: np.ndarray ) -> "Grid2DIrregular": """ Returns a new Grid2DIrregular from this grid coordinates, where the (y,x) coordinates of this grid have a grid of (y,x) values, termed the deflection grid, subtracted from them to determine the new grid of (y,x) values. This is to perform grid ray-tracing. Parameters ---------- deflection_grid The grid of (y,x) coordinates which is subtracted from this grid. """ return Grid2DIrregular(values=self - deflection_grid)
[docs] def squared_distances_to_coordinate_from( self, coordinate: Tuple[float, float] = (0.0, 0.0) ) -> ArrayIrregular: """ Returns the squared distance of every (y,x) coordinate in this *Coordinate* instance from an input coordinate. Parameters ---------- coordinate The (y,x) coordinate from which the squared distance of every *Coordinate* is computed. """ squared_distances = np.square(self[:, 0] - coordinate[0]) + np.square( self[:, 1] - coordinate[1] ) return ArrayIrregular(values=squared_distances)
[docs] def distances_to_coordinate_from( self, coordinate: Tuple[float, float] = (0.0, 0.0) ) -> ArrayIrregular: """ Returns the distance of every (y,x) coordinate in this *Coordinate* instance from an input coordinate. Parameters ---------- coordinate The (y,x) coordinate from which the distance of every coordinate is computed. """ distances = np.sqrt( self.squared_distances_to_coordinate_from(coordinate=coordinate) ) return ArrayIrregular(values=distances)
@property def furthest_distances_to_other_coordinates(self) -> ArrayIrregular: """ For every (y,x) coordinate on the `Grid2DIrregular` returns the furthest radial distance of each coordinate to any other coordinate on the grid. For example, for the following grid: :: values=[(0.0, 0.0), (0.0, 1.0), (0.0, 3.0)] The returned further distances are: :: [3.0, 2.0, 3.0] Returns ------- ArrayIrregular The further distances of every coordinate to every other coordinate on the irregular grid. """ radial_distances_max = np.zeros((self.shape[0])) for i in range(self.shape[0]): x_distances = np.square(np.subtract(self[i, 0], self[:, 0])) y_distances = np.square(np.subtract(self[i, 1], self[:, 1])) radial_distances_max[i] = np.sqrt(np.max(np.add(x_distances, y_distances))) return ArrayIrregular(values=radial_distances_max)
[docs] def grid_of_closest_from(self, grid_pair: "Grid2DIrregular") -> "Grid2DIrregular": """ From an input grid, find the closest coordinates of this instance of the `Grid2DIrregular` to each coordinate on the input grid and return each closest coordinate as a new `Grid2DIrregular`. Parameters ---------- grid_pair The grid of coordinates the closest coordinate of each (y,x) location is paired with. Returns ------- The grid of coordinates corresponding to the closest coordinate of each coordinate of this instance of the `Grid2DIrregular` to the input grid. """ grid_of_closest = np.zeros((grid_pair.shape[0], 2)) for i in range(grid_pair.shape[0]): x_distances = np.square(np.subtract(grid_pair[i, 0], self[:, 0])) y_distances = np.square(np.subtract(grid_pair[i, 1], self[:, 1])) radial_distances = np.add(x_distances, y_distances) grid_of_closest[i, :] = self[np.argmin(radial_distances), :] return Grid2DIrregular(values=grid_of_closest)
class Grid2DIrregularUniform(Grid2DIrregular): def __init__( self, values: np.ndarray, shape_native: Optional[Tuple[float, float]] = None, pixel_scales: Optional[Tuple[float, float]] = None, ): """ A collection of (y,x) coordinates which is structured as follows: :: [[x0, x1], [x0, x1]] The grid object does not store the coordinates as a list of tuples, but instead a 2D NumPy array of shape [total_coordinates, 2]. They are stored as a NumPy array so the coordinates can be used efficiently for calculations. The coordinates input to this function can have any of the following forms: :: [(y0,x0), (y1,x1)] In all cases, they will be converted to a list of tuples followed by a 2D NumPy array. Print methods are overidden so a user always "sees" the coordinates as the list structure. Like the `Grid2D` structure, `Grid2DIrregularUniform` lie on a uniform grid corresponding to values that originate from a uniform grid. This contrasts the `Grid2DIrregular` class above. However, although this class stores the pixel-scale and 2D shape of this grid, it does not store the mask that a `Grid2D` does that enables the coordinates to be mapped from 1D to 2D. This is for calculations that utilize the 2d information of the grid but do not want the memory overheads associated with the 2D mask. Parameters ---------- values A collection of (y,x) coordinates that. """ if len(values) == 0: super().__init__(values=values) return if isinstance(values[0], float): values = [values] if isinstance(values[0], tuple): values = [values] elif isinstance(values[0], (np.ndarray, AbstractNDArray)): if len(values[0].shape) == 1: values = [values] elif isinstance(values[0], list) and isinstance(values[0][0], (float)): values = [values] coordinates_arr = np.concatenate([np.array(i) for i in values]) self._internal_list = values pixel_scales = geometry_util.convert_pixel_scales_2d(pixel_scales=pixel_scales) self.shape_native = shape_native self.pixel_scales = pixel_scales super().__init__(coordinates_arr) def __array_finalize__(self, obj): if hasattr(obj, "_internal_list"): self._internal_list = obj._internal_list if hasattr(obj, "shape_native"): self.shape_native = obj.shape_native if hasattr(obj, "pixel_scales"): self.pixel_scales = obj.pixel_scales @property def pixel_scale(self) -> float: if self.pixel_scales[0] == self.pixel_scales[1]: return self.pixel_scales[0] else: logger.warning( f""" The `Grid2DIrregular` has pixel scales of {self.pixel_scales}, which are not the same in both dimensions. This means that the pixel scale of the grid is not a single value and may cause issues with calculations that assume a uniform pixel scale. """ ) @classmethod def from_grid_sparse_uniform_upscale( cls, grid_sparse_uniform: np.ndarray, upscale_factor: int, pixel_scales, shape_native=None, ) -> "Grid2DIrregularUniform": pixel_scales = geometry_util.convert_pixel_scales_2d(pixel_scales=pixel_scales) grid_upscaled_1d = grid_2d_util.grid_2d_slim_upscaled_from( grid_slim=np.array(grid_sparse_uniform), upscale_factor=upscale_factor, pixel_scales=pixel_scales, ) pixel_scales = ( pixel_scales[0] / upscale_factor, pixel_scales[1] / upscale_factor, ) return Grid2DIrregularUniform( values=grid_upscaled_1d, pixel_scales=pixel_scales, shape_native=shape_native, ) def grid_from(self, grid_slim: np.ndarray) -> "Grid2DIrregularUniform": """ Create a `Grid2DIrregularUniform` object from a 2D NumPy array of values of shape [total_coordinates, 2]. The `Grid2DIrregularUniform` are structured following this *GridIrregular2D* instance. """ return Grid2DIrregularUniform( values=grid_slim, pixel_scales=self.pixel_scales, shape_native=self.shape_native, ) def grid_2d_via_deflection_grid_from( self, deflection_grid: np.ndarray ) -> "Grid2DIrregularUniform": """ Returns a new Grid2DIrregular from this grid coordinates, where the (y,x) coordinates of this grid have a grid of (y,x) values, termed the deflection grid, subtracted from them to determine the new grid of (y,x) values. This is used by PyAutoLens to perform grid ray-tracing. Parameters ---------- deflection_grid The grid of (y,x) coordinates which is subtracted from this grid. """ return Grid2DIrregularUniform( values=self - deflection_grid, pixel_scales=self.pixel_scales, shape_native=self.shape_native, )