Source code for autofit.mapper.prior.log_gaussian

from typing import Optional

import numpy as np

from autofit.messages.normal import NormalMessage
from .abstract import Prior
from ...messages.composed_transform import TransformedMessage
from ...messages.transform import log_transform


[docs] class LogGaussianPrior(Prior): __identifier_fields__ = ("lower_limit", "upper_limit", "mean", "sigma") __database_args__ = ("mean", "sigma", "lower_limit", "upper_limit", "id_") def __init__( self, mean: float, sigma: float, lower_limit: float = 0.0, upper_limit: float = float("inf"), id_: Optional[int] = None, ): """ A prior for a variable whose logarithm is gaussian distributed. Work in natural log. The conversion of an input unit value, ``u``, to a physical value, ``p``, via the prior is as follows: .. math:: p = \mu + (\sigma * sqrt(2) * erfcinv(2.0 * (1.0 - u)) For example for ``prior = LogGaussianPrior(mean=1.0, sigma=2.0)``, an input ``prior.value_for(unit=0.5)`` is equal to 1.0. [Rich describe how this is done via message] Parameters ---------- mean The *natural log* of the distribution's mean. sigma The spread of this distribution in *natural log* space, e.g. sigma=1.0 means P(ln x) has a standard deviation of 1. lower_limit A lower limit in *real space* (not log); physical values below this are rejected. upper_limit A upper limit in *real space* (not log); physical values above this are rejected. Examples -------- prior = af.LogGaussianPrior(mean=1.0, sigma=2.0, lower_limit=0.0, upper_limit=2.0) physical_value = prior.value_for(unit=0.5) """ lower_limit = float(lower_limit) upper_limit = float(upper_limit) self.mean = mean self.sigma = sigma message = TransformedMessage( NormalMessage(mean, sigma), log_transform, ) super().__init__( message=message, lower_limit=lower_limit, upper_limit=upper_limit, id_=id_, )
[docs] @classmethod def with_limits(cls, lower_limit: float, upper_limit: float) -> "LogGaussianPrior": """ Create a new gaussian prior centred between two limits with sigma distance between this limits. Note that these limits are not strict so exceptions will not be raised for values outside of the limits. This function is typically used in prior passing, where the result of a model-fit are used to create new Gaussian priors centred on the previously estimated median PDF model. Parameters ---------- lower_limit The lower limit of the new Gaussian prior. upper_limit The upper limit of the new Gaussian Prior. Returns ------- A new GaussianPrior """ return cls( mean=(lower_limit + upper_limit) / 2, sigma=upper_limit - lower_limit, lower_limit=lower_limit, upper_limit=upper_limit, )
def _new_for_base_message(self, message): """ Create a new instance of this wrapper but change the parameters used to instantiate the underlying message. This is useful for retaining the same transform stack after recreating the underlying message during projection. """ return LogGaussianPrior( *message.parameters, lower_limit=self.lower_limit, upper_limit=self.upper_limit, id_=self.instance().id, )
[docs] def value_for(self, unit: float, ignore_prior_limits: bool = False) -> float: """ Return a physical value for a value between 0 and 1 with the transformation described by this prior. Parameters ---------- unit A unit value between 0 and 1. Returns ------- A physical value, mapped from the unit value accoridng to the prior. """ return super().value_for(unit, ignore_prior_limits=ignore_prior_limits)
@property def parameter_string(self) -> str: return f"mean = {self.mean}, sigma = {self.sigma}" def log_prior_from_value(self, value): if value <= 0: return float("-inf") return self.message.base_message.log_prior_from_value(np.log(value)) - np.log( value )