from astropy import units
import numpy as np
from typing import Tuple
import autoarray as aa
from autogalaxy import convert
from autogalaxy.profiles.mass.abstract.abstract import MassProfile
def radial_and_angle_grid_from(
grid: aa.type.Grid2DLike, centre: Tuple[float, float] = (0.0, 0.0)
) -> Tuple[np.ndarray, np.ndarray]:
"""
Converts the input grid of Cartesian (y,x) coordinates to their correspond radial and polar grids.
Parameters
----------
grid
The grid of (y,x) arc-second coordinates that are converted to radial and polar values.
centre
The centre of the multipole profile.
Returns
-------
The radial and polar coordinate grids of the input (y,x) Cartesian grid.
"""
y, x = grid.T
x_shifted = np.subtract(x, centre[1])
y_shifted = np.subtract(y, centre[0])
radial_grid = np.sqrt(x_shifted**2 + y_shifted**2)
angle_grid = np.arctan2(y_shifted, x_shifted)
return radial_grid, angle_grid
[docs]
class PowerLawMultipole(MassProfile):
def __init__(
self,
m=4,
centre: Tuple[float, float] = (0.0, 0.0),
einstein_radius: float = 1.0,
slope: float = 2.0,
multipole_comps: Tuple[float, float] = (0.0, 0.0),
):
r"""
A multipole extension with multipole order M to the power-law total mass distribution.
Quantities computed from this profile (e.g. deflections, convergence) are of only the multipole, and not the
power-law mass distribution itself.
The typical use case is therefore for the multipoles to be combined with a `PowerLaw` mass profile with the
same parameters (see example below).
When combined with a power-law, the functional form of the convergence is:
.. math::
\kappa(r, \phi) = \frac{1}{2} \left(\frac{\theta_{\rm E}^{\rm mass}}{r}\right)^{\gamma^{\rm mass} - 1}
k^{\rm mass}_m \, \cos(m(\phi - \phi^{\rm mass}_m)) \, ,
Where \\xi are elliptical coordinates calculated according to :class: SphProfile.
The parameters :math: k^{\rm mass}_m and :math: \phi^{\rm mass}_are parameterized as elliptical components
:math: (\epsilon_{\rm 1}^{\rm mp}\,\epsilon_{\rm 2}^{\rm mp}), which are given by:
.. math::
\phi^{\rm mass}_m = \arctan{\frac{\epsilon_{\rm 2}^{\rm mp}}{\epsilon_{\rm 2}^{\rm mp}}}, \, \,
k^{\rm mass}_m = \sqrt{{\epsilon_{\rm 1}^{\rm mp}}^2 + {\epsilon_{\rm 2}^{\rm mp}}^2} \, .
This mass profile is described fully in the following paper: https://arxiv.org/abs/1302.5482
Parameters
----------
centre
The (y,x) arc-second coordinates of the profile centre.
einstein_radius
The arc-second Einstein radius.
slope
The density slope of the power-law (lower value -> shallower profile, higher value -> steeper profile).
multipole_comps
The first and second ellipticity components of the multipole.
Examples
--------
mass = al.mp.PowerLaw(
centre=(0.0, 0.0),
ell_comps=(-0.1, 0.2),
einstein_radius=1.0,
slope=2.2
)
multipole = al.mp.PowerLawMultipole(
centre=(0.0, 0.0),
einstein_radius=1.0,
slope=2.2,
multipole_comps=(0.3, 0.2)
)
galaxy = al.Galaxy(
redshift=0.5,
mass=mass,
multipole=multipole
)
grid=al.Grid2D.uniform(shape_native=(10, 10), pixel_scales=0.1)
deflections = galaxy.deflections_yx_2d_from(
grid=grid
)
"""
super().__init__(centre=centre, ell_comps=(0.0, 0.0))
self.m = int(m)
self.einstein_radius = einstein_radius
self.slope = slope
self.multipole_comps = multipole_comps
self.k_m, self.angle_m = convert.multipole_k_m_and_phi_m_from(
multipole_comps=multipole_comps, m=m
)
self.angle_m *= units.deg.to(units.rad)
[docs]
def jacobian(
self, a_r: np.ndarray, a_angle: np.ndarray, polar_angle_grid: np.ndarray
) -> Tuple[np.ndarray, Tuple]:
"""
The Jacobian transformation from polar to cartesian coordinates.
Parameters
----------
a_r
Ask Aris
a_angle
Ask Aris
polar_angle_grid
The polar angle coordinates of the input (y,x) Cartesian grid of coordinates.
"""
return (
a_r * np.sin(polar_angle_grid) + a_angle * np.cos(polar_angle_grid),
a_r * np.cos(polar_angle_grid) - a_angle * np.sin(polar_angle_grid),
)
[docs]
@aa.grid_dec.to_vector_yx
@aa.grid_dec.transform
@aa.grid_dec.relocate_to_radial_minimum
def deflections_yx_2d_from(
self, grid: aa.type.Grid1D2DLike, **kwargs
) -> np.ndarray:
"""
Calculate the deflection angles on a grid of (y,x) arc-second coordinates.
For coordinates (0.0, 0.0) the analytic calculation of the deflection angle gives a NaN. Therefore,
coordinates at (0.0, 0.0) are shifted slightly to (1.0e-8, 1.0e-8).
Parameters
----------
grid
The grid of (y,x) arc-second coordinates the deflection angles are computed on.
"""
radial_grid, polar_angle_grid = radial_and_angle_grid_from(grid=grid)
a_r = (
-(
(3.0 - self.slope)
* self.einstein_radius ** (self.slope - 1.0)
* radial_grid ** (2.0 - self.slope)
)
/ (self.m**2.0 - (3.0 - self.slope) ** 2.0)
* self.k_m
* np.cos(self.m * (polar_angle_grid - self.angle_m))
)
a_angle = (
(
self.m
* self.einstein_radius ** (self.slope - 1.0)
* radial_grid ** (2.0 - self.slope)
)
/ (self.m**2.0 - (3.0 - self.slope) ** 2.0)
* self.k_m
* np.sin(self.m * (polar_angle_grid - self.angle_m))
)
return np.stack(
self.jacobian(a_r=a_r, a_angle=a_angle, polar_angle_grid=polar_angle_grid),
axis=-1,
)
[docs]
@aa.over_sample
@aa.grid_dec.to_array
@aa.grid_dec.transform
@aa.grid_dec.relocate_to_radial_minimum
def convergence_2d_from(self, grid: aa.type.Grid1D2DLike, **kwargs) -> np.ndarray:
"""
Returns the two dimensional projected convergence on a grid of (y,x) arc-second coordinates.
Parameters
----------
grid
The grid of (y,x) arc-second coordinates the convergence is computed on.
"""
r, angle = radial_and_angle_grid_from(grid=grid)
return (
1.0
/ 2.0
* (self.einstein_radius / r) ** (self.slope - 1)
* self.k_m
* np.cos(self.m * (angle - self.angle_m))
)
[docs]
@aa.grid_dec.to_array
def potential_2d_from(self, grid: aa.type.Grid2DLike, **kwargs) -> np.ndarray:
"""
Calculate the potential on a grid of (y,x) arc-second coordinates.
Parameters
----------
grid
The grid of (y,x) arc-second coordinates the deflection angles are computed on.
"""
return np.zeros(shape=grid.shape[0])