Source code for autogalaxy.profiles.mass.total.power_law_multipole

from astropy import units
import numpy as np
from typing import Tuple

import autoarray as aa

from autogalaxy import convert

from autogalaxy.profiles.mass.abstract.abstract import MassProfile


def radial_and_angle_grid_from(
    grid: aa.type.Grid2DLike, centre: Tuple[float, float] = (0.0, 0.0)
) -> Tuple[np.ndarray, np.ndarray]:
    """
    Converts the input grid of Cartesian (y,x) coordinates to their correspond radial and polar grids.

    Parameters
    ----------
    grid
        The grid of (y,x) arc-second coordinates that are converted to radial and polar values.
    centre
        The centre of the multipole profile.

    Returns
    -------
    The radial and polar coordinate grids of the input (y,x) Cartesian grid.
    """
    y, x = grid.T

    x_shifted = np.subtract(x, centre[1])
    y_shifted = np.subtract(y, centre[0])

    radial_grid = np.sqrt(x_shifted**2 + y_shifted**2)

    angle_grid = np.arctan2(y_shifted, x_shifted)

    return radial_grid, angle_grid


[docs] class PowerLawMultipole(MassProfile): def __init__( self, m=4, centre: Tuple[float, float] = (0.0, 0.0), einstein_radius: float = 1.0, slope: float = 2.0, multipole_comps: Tuple[float, float] = (0.0, 0.0), ): r""" A multipole extension with multipole order M to the power-law total mass distribution. Quantities computed from this profile (e.g. deflections, convergence) are of only the multipole, and not the power-law mass distribution itself. The typical use case is therefore for the multipoles to be combined with a `PowerLaw` mass profile with the same parameters (see example below). When combined with a power-law, the functional form of the convergence is: .. math:: \kappa(r, \phi) = \frac{1}{2} \left(\frac{\theta_{\rm E}^{\rm mass}}{r}\right)^{\gamma^{\rm mass} - 1} k^{\rm mass}_m \, \cos(m(\phi - \phi^{\rm mass}_m)) \, , Where \\xi are elliptical coordinates calculated according to :class: SphProfile. The parameters :math: k^{\rm mass}_m and :math: \phi^{\rm mass}_are parameterized as elliptical components :math: (\epsilon_{\rm 1}^{\rm mp}\,\epsilon_{\rm 2}^{\rm mp}), which are given by: .. math:: \phi^{\rm mass}_m = \arctan{\frac{\epsilon_{\rm 2}^{\rm mp}}{\epsilon_{\rm 2}^{\rm mp}}}, \, \, k^{\rm mass}_m = \sqrt{{\epsilon_{\rm 1}^{\rm mp}}^2 + {\epsilon_{\rm 2}^{\rm mp}}^2} \, . This mass profile is described fully in the following paper: https://arxiv.org/abs/1302.5482 Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. einstein_radius The arc-second Einstein radius. slope The density slope of the power-law (lower value -> shallower profile, higher value -> steeper profile). multipole_comps The first and second ellipticity components of the multipole. Examples -------- mass = al.mp.PowerLaw( centre=(0.0, 0.0), ell_comps=(-0.1, 0.2), einstein_radius=1.0, slope=2.2 ) multipole = al.mp.PowerLawMultipole( centre=(0.0, 0.0), einstein_radius=1.0, slope=2.2, multipole_comps=(0.3, 0.2) ) galaxy = al.Galaxy( redshift=0.5, mass=mass, multipole=multipole ) grid=al.Grid2D.uniform(shape_native=(10, 10), pixel_scales=0.1) deflections = galaxy.deflections_yx_2d_from( grid=grid ) """ super().__init__(centre=centre, ell_comps=(0.0, 0.0)) self.m = int(m) self.einstein_radius = einstein_radius self.slope = slope self.multipole_comps = multipole_comps self.k_m, self.angle_m = convert.multipole_k_m_and_phi_m_from( multipole_comps=multipole_comps, m=m ) self.angle_m *= units.deg.to(units.rad)
[docs] def jacobian( self, a_r: np.ndarray, a_angle: np.ndarray, polar_angle_grid: np.ndarray ) -> Tuple[np.ndarray, Tuple]: """ The Jacobian transformation from polar to cartesian coordinates. Parameters ---------- a_r Ask Aris a_angle Ask Aris polar_angle_grid The polar angle coordinates of the input (y,x) Cartesian grid of coordinates. """ return ( a_r * np.sin(polar_angle_grid) + a_angle * np.cos(polar_angle_grid), a_r * np.cos(polar_angle_grid) - a_angle * np.sin(polar_angle_grid), )
[docs] @aa.grid_dec.to_vector_yx @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_yx_2d_from( self, grid: aa.type.Grid1D2DLike, **kwargs ) -> np.ndarray: """ Calculate the deflection angles on a grid of (y,x) arc-second coordinates. For coordinates (0.0, 0.0) the analytic calculation of the deflection angle gives a NaN. Therefore, coordinates at (0.0, 0.0) are shifted slightly to (1.0e-8, 1.0e-8). Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ radial_grid, polar_angle_grid = radial_and_angle_grid_from(grid=grid) a_r = ( -( (3.0 - self.slope) * self.einstein_radius ** (self.slope - 1.0) * radial_grid ** (2.0 - self.slope) ) / (self.m**2.0 - (3.0 - self.slope) ** 2.0) * self.k_m * np.cos(self.m * (polar_angle_grid - self.angle_m)) ) a_angle = ( ( self.m * self.einstein_radius ** (self.slope - 1.0) * radial_grid ** (2.0 - self.slope) ) / (self.m**2.0 - (3.0 - self.slope) ** 2.0) * self.k_m * np.sin(self.m * (polar_angle_grid - self.angle_m)) ) return np.stack( self.jacobian(a_r=a_r, a_angle=a_angle, polar_angle_grid=polar_angle_grid), axis=-1, )
[docs] @aa.over_sample @aa.grid_dec.to_array @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_from(self, grid: aa.type.Grid1D2DLike, **kwargs) -> np.ndarray: """ Returns the two dimensional projected convergence on a grid of (y,x) arc-second coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ r, angle = radial_and_angle_grid_from(grid=grid) return ( 1.0 / 2.0 * (self.einstein_radius / r) ** (self.slope - 1) * self.k_m * np.cos(self.m * (angle - self.angle_m)) )
[docs] @aa.grid_dec.to_array def potential_2d_from(self, grid: aa.type.Grid2DLike, **kwargs) -> np.ndarray: """ Calculate the potential on a grid of (y,x) arc-second coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ return np.zeros(shape=grid.shape[0])